Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Integr Peer Rev ; 8(1): 9, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37533089

RESUMO

BACKGROUND: The practice of clinical research is strictly regulated by law. During submission and review processes, compliance of such research with the laws enforced in the country where it was conducted is not always correctly filled in by the authors or verified by the editors. Here, we report a case of a single institution for which one may find hundreds of publications with seemingly relevant ethical concerns, along with 10 months of follow-up through contacts with the editors of these articles. We thus argue for a stricter control of ethical authorization by scientific editors and we call on publishers to cooperate to this end. METHODS: We present an investigation of the ethics and legal aspects of 456 studies published by the IHU-MI (Institut Hospitalo-Universitaire Méditerranée Infection) in Marseille, France. RESULTS: We identified a wide range of issues with the stated research authorization and ethics of the published studies with respect to the Institutional Review Board and the approval presented. Among the studies investigated, 248 were conducted with the same ethics approval number, even though the subjects, samples, and countries of investigation were different. Thirty-nine (39) did not even contain a reference to the ethics approval number while they present research on human beings. We thus contacted the journals that published these articles and provide their responses to our concerns. It should be noted that, since our investigation and reporting to journals, PLOS has issued expressions of concerns for several publications we analyze here. CONCLUSION: This case presents an investigation of the veracity of ethical approval, and more than 10 months of follow-up by independent researchers. We call for stricter control and cooperation in handling of these cases, including editorial requirement to upload ethical approval documents, guidelines from COPE to address such ethical concerns, and transparent editorial policies and timelines to answer such concerns. All supplementary materials are available.

4.
Stem Cell Rev Rep ; 19(2): 568-572, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36287337

RESUMO

Recently, an article by Seneff et al. entitled "Innate immunosuppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs" was published in Food and Chemical Toxicology (FCT). Here, we describe why this article, which contains unsubstantiated claims and misunderstandings such as "billions of lives are potentially at risk" with COVID-19 mRNA vaccines, is problematic and should be retracted. We report here our request to the editor of FCT to have our rebuttal published, unfortunately rejected after three rounds of reviewing. Fighting the spread of false information requires enormous effort while receiving little or no credit for this necessary work, which often even ends up being threatened. This need for more scientific integrity is at the heart of our advocacy, and we call for large support, especially from editors and publishers, to fight more effectively against deadly disinformation.


Assuntos
COVID-19 , Editoração , Retratação de Publicação como Assunto , Humanos , SARS-CoV-2/genética
7.
BMC Med Res Methodol ; 21(1): 117, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090351

RESUMO

In the last decade Open Science principles have been successfully advocated for and are being slowly adopted in different research communities. In response to the COVID-19 pandemic many publishers and researchers have sped up their adoption of Open Science practices, sometimes embracing them fully and sometimes partially or in a sub-optimal manner. In this article, we express concerns about the violation of some of the Open Science principles and its potential impact on the quality of research output. We provide evidence of the misuses of these principles at different stages of the scientific process. We call for a wider adoption of Open Science practices in the hope that this work will encourage a broader endorsement of Open Science principles and serve as a reminder that science should always be a rigorous process, reliable and transparent, especially in the context of a pandemic where research findings are being translated into practice even more rapidly. We provide all data and scripts at https://osf.io/renxy/ .


Assuntos
COVID-19 , Pandemias , Humanos , Pandemias/prevenção & controle , Publicações , Pesquisadores , SARS-CoV-2
10.
Oncotarget ; 11(11): 956-968, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32215184

RESUMO

The histone 3 lysine 79 (H3K79) methyltransferase (HMT) DOT1L is known to play a critical role for growth and survival of MLL-rearranged leukemia. Serendipitous observations during high-throughput drug screens indicated that the use of DOT1L inhibitors might be expandable to multiple myeloma (MM). Through pharmacologic and genetic experiments, we could validate that DOT1L is essential for growth and viability of a subset of MM cell lines, in line with a recent report from another team. In vivo activity against established MM xenografts was observed with a novel DOT1L inhibitor. In order to understand the molecular mechanism of the dependency in MM, we examined gene expression changes upon DOT1L inhibition in sensitive and insensitive cell lines and discovered that genes belonging to the endoplasmic reticulum (ER) stress pathway and protein synthesis machinery were specifically suppressed in sensitive cells. Whole-genome CRISPR screens in the presence or absence of a DOT1L inhibitor revealed that concomitant targeting of the H3K4me3 methyltransferase SETD1B increases the effect of DOT1L inhibition. Our results provide a strong basis for further investigating DOT1L and SETD1B as targets in MM.

11.
Mol Cancer Ther ; 18(7): 1323-1334, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31068384

RESUMO

FGFR1 was recently shown to be activated as part of a compensatory response to prolonged treatment with the MEK inhibitor trametinib in several KRAS-mutant lung and pancreatic cancer cell lines. We hypothesize that other receptor tyrosine kinases (RTK) are also feedback-activated in this context. Herein, we profile a large panel of KRAS-mutant cancer cell lines for the contribution of RTKs to the feedback activation of phospho-MEK following MEK inhibition, using an SHP2 inhibitor (SHP099) that blocks RAS activation mediated by multiple RTKs. We find that RTK-driven feedback activation widely exists in KRAS-mutant cancer cells, to a less extent in those harboring the G13D variant, and involves several RTKs, including EGFR, FGFR, and MET. We further demonstrate that this pathway feedback activation is mediated through mutant KRAS, at least for the G12C, G12D, and G12V variants, and wild-type KRAS can also contribute significantly to the feedback activation. Finally, SHP099 and MEK inhibitors exhibit combination benefits inhibiting KRAS-mutant cancer cell proliferation in vitro and in vivo These findings provide a rationale for exploration of combining SHP2 and MAPK pathway inhibitors for treating KRAS-mutant cancers in the clinic.


Assuntos
Acrilonitrila/análogos & derivados , Compostos de Anilina/uso terapêutico , Neoplasias/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Acrilonitrila/farmacologia , Acrilonitrila/uso terapêutico , Compostos de Anilina/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
12.
PLoS Comput Biol ; 14(7): e1006279, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30024886

RESUMO

Cell autonomous cancer dependencies are now routinely identified using CRISPR loss-of-function viability screens. However, a bias exists that makes it difficult to assess the true essentiality of genes located in amplicons, since the entire amplified region can exhibit lethal scores. These false-positive hits can either be discarded from further analysis, which in cancer models can represent a significant number of hits, or methods can be developed to rescue the true-positives within amplified regions. We propose two methods to rescue true positive hits in amplified regions by correcting for this copy number artefact. The Local Drop Out (LDO) method uses the relative lethality scores within genomic regions to assess true essentiality and does not require additional orthogonal data (e.g. copy number value). LDO is meant to be used in screens covering a dense region of the genome (e.g. a whole chromosome or the whole genome). The General Additive Model (GAM) method models the screening data as a function of the known copy number values and removes the systematic effect from the measured lethality. GAM does not require the same density as LDO, but does require prior knowledge of the copy number values. Both methods have been developed with single sample experiments in mind so that the correction can be applied even in smaller screens. Here we demonstrate the efficacy of both methods at removing the copy number effect and rescuing hits from some of the amplified regions. We estimate a 70-80% decrease of false positive hits with either method in regions of high copy number compared to no correction.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Variações do Número de Cópias de DNA/genética , Neoplasias/genética , Artefatos , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Conjuntos de Dados como Assunto , Reações Falso-Positivas , Genômica , Humanos , Modelos Teóricos , Neoplasias/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
13.
Cell ; 170(3): 577-592.e10, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28753431

RESUMO

Elucidation of the mutational landscape of human cancer has progressed rapidly and been accompanied by the development of therapeutics targeting mutant oncogenes. However, a comprehensive mapping of cancer dependencies has lagged behind and the discovery of therapeutic targets for counteracting tumor suppressor gene loss is needed. To identify vulnerabilities relevant to specific cancer subtypes, we conducted a large-scale RNAi screen in which viability effects of mRNA knockdown were assessed for 7,837 genes using an average of 20 shRNAs per gene in 398 cancer cell lines. We describe findings of this screen, outlining the classes of cancer dependency genes and their relationships to genetic, expression, and lineage features. In addition, we describe robust gene-interaction networks recapitulating both protein complexes and functional cooperation among complexes and pathways. This dataset along with a web portal is provided to the community to assist in the discovery and translation of new therapeutic approaches for cancer.


Assuntos
Neoplasias/genética , Neoplasias/patologia , Interferência de RNA , Linhagem Celular Tumoral , Biblioteca Gênica , Redes Reguladoras de Genes , Humanos , Complexos Multiproteicos/metabolismo , Neoplasias/metabolismo , Oncogenes , RNA Interferente Pequeno , Transdução de Sinais , Fatores de Transcrição/metabolismo
14.
Cancer Discov ; 6(8): 900-13, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27260157

RESUMO

UNLABELLED: CRISPR/Cas9 has emerged as a powerful new tool to systematically probe gene function. We compared the performance of CRISPR to RNAi-based loss-of-function screens for the identification of cancer dependencies across multiple cancer cell lines. CRISPR dropout screens consistently identified more lethal genes than RNAi, implying that the identification of many cellular dependencies may require full gene inactivation. However, in two aneuploid cancer models, we found that all genes within highly amplified regions, including nonexpressed genes, scored as lethal by CRISPR, revealing an unanticipated class of false-positive hits. In addition, using a CRISPR tiling screen, we found that sgRNAs targeting essential domains generate the strongest lethality phenotypes and thus provide a strategy to rapidly define the protein domains required for cancer dependence. Collectively, these findings not only demonstrate the utility of CRISPR screens in the identification of cancer-essential genes, but also reveal the need to carefully control for false-positive results in chromosomally unstable cancer lines. SIGNIFICANCE: We show in this study that CRISPR-based screens have a significantly lower false-negative rate compared with RNAi-based screens, but have specific liabilities particularly in the interrogation of regions of genome amplification. Therefore, this study provides critical insights for applying CRISPR-based screens toward the systematic identification of new cancer targets. Cancer Discov; 6(8); 900-13. ©2016 AACR.See related commentary by Sheel and Xue, p. 824See related article by Aguirre et al., p. 914This article is highlighted in the In This Issue feature, p. 803.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Amplificação de Genes , Genoma Humano , Genômica , Neoplasias/genética , Linhagem Celular Tumoral , Estudos de Associação Genética , Genômica/métodos , Genômica/normas , Ensaios de Triagem em Larga Escala , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , RNA Guia de Cinetoplastídeos/genética , RNA Interferente Pequeno/genética , Reprodutibilidade dos Testes
15.
Science ; 351(6278): 1208-13, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26912361

RESUMO

5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA-mediated screen across 390 cancer cell line models, we found that the viability of MTAP-deficient cancer cells is impaired by depletion of the protein arginine methyltransferase PRMT5. MTAP-deleted cells accumulate the metabolite methylthioadenosine (MTA), which we found to inhibit PRMT5 methyltransferase activity. Deletion of MTAP in MTAP-proficient cells rendered them sensitive to PRMT5 depletion. Conversely, reconstitution of MTAP in an MTAP-deficient cell line rescued PRMT5 dependence. Thus, MTA accumulation in MTAP-deleted cancers creates a hypomorphic PRMT5 state that is selectively sensitized toward further PRMT5 inhibition. Inhibitors of PRMT5 that leverage this dysregulated metabolic state merit further investigation as a potential therapy for MTAP/CDKN2A-deleted tumors.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Metionina/metabolismo , Neoplasias/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Inibidor p16 de Quinase Dependente de Ciclina/genética , Desoxiadenosinas/metabolismo , Deleção de Genes , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína-Arginina N-Metiltransferases/genética , Purina-Núcleosídeo Fosforilase/genética , RNA Interferente Pequeno/genética , Tionucleosídeos/metabolismo
16.
Cancer Res ; 76(2): 390-402, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26577700

RESUMO

The introduction of MAPK pathway inhibitors paved the road for significant advancements in the treatment of BRAF-mutant (BRAF(MUT)) melanoma. However, even BRAF/MEK inhibitor combination therapy has failed to offer a curative treatment option, most likely because these pathways constitute a codependent signaling network. Concomitant PTEN loss of function (PTEN(LOF)) occurs in approximately 40% of BRAF(MUT) melanomas. In this study, we sought to identify the nodes of the PTEN/PI3K pathway that would be amenable to combined therapy with MAPK pathway inhibitors for the treatment of PTEN(LOF)/BRAF(MUT) melanoma. Large-scale compound sensitivity profiling revealed that PTEN(LOF) melanoma cell lines were sensitive to PI3Kß inhibitors, albeit only partially. An unbiased shRNA screen (7,500 genes and 20 shRNAs/genes) across 11 cell lines in the presence of a PI3Kß inhibitor identified an adaptive response involving the IGF1R-PI3Kα axis. Combined inhibition of the MAPK pathway, PI3Kß, and PI3Kα or insulin-like growth factor receptor 1 (IGF1R) synergistically sustained pathway blockade, induced apoptosis, and inhibited tumor growth in PTEN(LOF)/BRAF(MUT) melanoma models. Notably, combined treatment with the IGF1R inhibitor, but not the PI3Kα inhibitor, failed to elevate glucose or insulin signaling. Taken together, our findings provide a strong rationale for testing combinations of panPI3K, PI3Kß + IGF1R, and MAPK pathway inhibitors in PTEN(LOF)/BRAF(MUT) melanoma patients to achieve maximal response.


Assuntos
Sistema de Sinalização das MAP Quinases/genética , Melanoma/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Receptor IGF Tipo 1/metabolismo , Apoptose , Morte Celular , Proliferação de Células , Humanos , Melanoma/patologia , Proteômica
17.
PLoS One ; 8(4): e61916, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613971

RESUMO

The Hippo (Hpo) pathway is a novel signaling pathway that controls organ size in Drosophila and mammals and is deregulated in a variety of human cancers. It consists of a set of kinases that, through a number of phosphorylation events, inactivate YAP, a transcriptional co-activator that controls cellular proliferation and apoptosis. We have identified PTPN14 as a YAP-binding protein that negatively regulates YAP activity by controlling its localization. Mechanistically, we find that the interaction of ectopic YAP with PTPN14 can be mediated by the respective WW and PPxY motifs. However, the PTPN14 PPxY motif and phosphatase activity appear to be dispensable for the negative regulation of endogenous YAP, likely suggesting more complex mechanisms of interaction and modulation. Finally, we demonstrate that PTPN14 downregulation can phenocopy YAP activation in mammary epithelial cells and synergize with YAP to induce oncogenic transformation.


Assuntos
Fosfoproteínas/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Fosfoproteínas/genética , Ligação Proteica , Proteínas Tirosina Fosfatases não Receptoras/genética , Transdução de Sinais/fisiologia
18.
Angiogenesis ; 14(4): 533-44, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22045552

RESUMO

The G protein-coupled receptor GPR4 is activated by acidic pH and recent evidence indicates that it is expressed in endothelial cells. In agreement with these reports, we observe a high correlation of GPR4 mRNA expression with endothelial marker genes, and we confirm expression and acidic pH dependent function of GPR4 in primary human vascular endothelial cells. GPR4-deficient mice were generated; these are viable and fertile and show no gross abnormalities. However, these animals show a significantly reduced angiogenic response to VEGF (vascular endothelial growth factor), but not to bFGF (basic fibroblast growth factor), in a growth factor implant model. Accordingly, in two different orthotopic models, tumor growth is strongly reduced in mice lacking GPR4. Histological analysis of tumors indicates reduced tumor cell proliferation as well as altered vessel morphology, length and density. Moreover, GPR4 deficiency results in reduced VEGFR2 (VEGF Receptor 2) levels in endothelial cells, accounting, at least in part, for the observed phenotype. Our data suggest that endothelial cells sense local tissue acidosis via GPR4 and that this signal is required to generate a full angiogenic response to VEGF.


Assuntos
Células Endoteliais/metabolismo , Neoplasias/fisiopatologia , Neovascularização Patológica/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/metabolismo , Animais , Western Blotting , Proliferação de Células , Biologia Computacional , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Citometria de Fluxo , Imunofluorescência , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neoplasias/metabolismo , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
Angiogenesis ; 13(3): 259-67, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20803239

RESUMO

EphB4 and its cognitive ligand ephrinB2 play an important role in embryonic vessel development and vascular remodeling. In addition, several reports suggest that this receptor ligand pair is also involved in pathologic vessel formation in adults including tumor angiogenesis. Eph/ephrin signaling is a complex phenomena characterized by receptor forward signaling through the tyrosine kinase of the receptor and ephrin reverse signaling through various protein-protein interaction domains and phosphorylation motifs of the ephrin ligands. Therefore, interfering with EphR/ephrin signaling by the means of targeted gene ablation, soluble receptors, dominant negative mutants or antisense molecules often does not allow to discriminate between inhibition of Eph/ephrin forward and reverse signaling. We developed a specific small molecular weight kinase inhibitor of the EphB4 kinase, NVP-BHG712, which inhibits EphB4 kinase activity in the low nanomolar range in cellular assays showed high selectivity for targeting the EphB4 kinase when profiled against other kinases in biochemical as well as in cell based assays. Furthermore, NVP-BHG712 shows excellent pharmacokinetic properties and potently inhibits EphB4 autophosphorylation in tissues after oral administration. In vivo, NVP-BHG712 inhibits VEGF driven vessel formation, while it has only little effects on VEGF receptor (VEGFR) activity in vitro or in cellular assays. The data shown here suggest a close cross talk between the VEGFR and EphR signaling during vessel formation. In addition to its established function in vascular remodeling and endothelial arterio-venous differentiation, EphB4 forward signaling appears to be an important mediator of VEGF induced angiogenesis since inhibition of EphB4 forward signaling is sufficient to inhibit VEGF induced angiogenesis.


Assuntos
Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Receptor EphB4/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacocinética , Animais , Bioensaio , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Neovascularização Patológica/enzimologia , Tamanho do Órgão/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Pirazóis/química , Pirazóis/farmacocinética , Pirimidinas/química , Pirimidinas/farmacocinética , Receptor EphB4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Solubilidade/efeitos dos fármacos
20.
Cancer Res ; 66(1): 221-31, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16397235

RESUMO

FTY720, a potent immunomodulator, becomes phosphorylated in vivo (FTY-P) and interacts with sphingosine-1-phosphate (S1P) receptors. Recent studies showed that FTY-P affects vascular endothelial growth factor (VEGF)-induced vascular permeability, an important aspect of angiogenesis. We show here that FTY720 has antiangiogenic activity, potently abrogating VEGF- and S1P-induced angiogenesis in vivo in growth factor implant and corneal models. FTY720 administration tended to inhibit primary and significantly inhibited metastatic tumor growth in a mouse model of melanoma growth. In combination with a VEGFR tyrosine kinase inhibitor PTK787/ZK222584, FTY720 showed some additional benefit. FTY720 markedly inhibited tumor-associated angiogenesis, and this was accompanied by decreased tumor cell proliferation and increased apoptosis. In transfected HEK293 cells, FTY-P internalized S1P1 receptors, inhibited their recycling to the cell surface, and desensitized S1P receptor function. Both FTY720 and FTY-P apparently failed to impede VEGF-produced increases in mitogen-activated protein kinase activity in human umbilical vascular endothelial cells (HUVEC), and unlike its activity in causing S1PR internalization, FTY-P did not result in a decrease of surface VEGFR2 levels in HUVEC cells. Pretreatment with FTY720 or FTY-P prevented S1P-induced Ca2+ mobilization and migration in vascular endothelial cells. These data show that functional antagonism of vascular S1P receptors by FTY720 potently inhibits angiogenesis; therefore, this may provide a novel therapeutic approach for pathologic conditions with dysregulated angiogenesis.


Assuntos
Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/tratamento farmacológico , Propilenoglicóis/farmacologia , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Animais , Cálcio/metabolismo , Processos de Crescimento Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Córnea/irrigação sanguínea , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Feminino , Cloridrato de Fingolimode , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Fosforilação , Ftalazinas/farmacologia , Propilenoglicóis/farmacocinética , Piridinas/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...